Tetrahedron Letters Vol. 21, pp 3911 - 3914 © Pergamon Press Ltd. 1980, Printed in Great Britain

STUDIES ON MARINE NATURAL PRODUCTS. IV THE STEREOCHEMISTRY OF 13-MEMBERED CARBOCYCLIC CEMBRANOLIDE DITERPENES FROM THE SOFT CORAL LOBOPHYTUM PAUCIFLORUM (EHRENBERG)

Yasuji Yamada*, Sukeji Suzuki and Kazuo Iguchi Tokyo College of Pharmacy, Hachioji, Tokyo 192-03, Japan

Hiroyuki Kikuchi, Yasumasa Tsukitani, Haruo Horiai and Fumio Shibayama Tokyo Research Laboratories, Fujisawa Pharmaceutical Co., Ltd., Nukuikitamachi, Koganei, Tokyo 184, Japan

<u>Summary</u>: The relative and absolute stereochemistry of two 13-membered carbocyclic cembranolides was determined as shown in $\underline{1}$ and $\underline{2}$ on the basis of NMR spectral evidence.

A number of marine cembranolide diterpenes have been recently found in soft $coral_{,}^{1)}$ and in some cases these diterpenes have been reported to have interesting biological properties,²⁾ such as an anticancer activity. Most of these diterpenes possess a 14-membered carbocyclic ring system, to which a X- or 5-lactone moiety is attached in many cases. We have already described the isolation and the planar structures of two cembranolide diterpenes, (1) and (2) from the Japanese soft coral <u>Lobophytum pauciflorum</u> (Ehrenberg)(Coelenterata, Anthozoa, Alcyonaria, Alcyonacea), each of which contains a unique 13-membered carbocyclic ring system. The stereochemistry of two trisubstituted carbon-carbon double bonds have been assigned as E-type geometry from the ¹³C-NMR chemical shifts of the olefin methyl carbons. We now wish to describe evidence for the stereochemistry of the chiral centers at C-3a, 5, 6 and 14a as depicted in <u>1</u> and <u>2</u>.

The absolute configuration of the secondary hydroxyl group at C-5 in (2) we determined by applying a ¹H-NMR lanthanide induced shifts(LIS) method⁴⁾ and Mosher's ¹⁹F-NMR configuration-correlation method⁵⁾ for the diastereomeric α -methoxy- α -trifluoromethylphenylacetyl(MTPA) esters. Acylation of (2) with <u>R</u>-(+)-

and \underline{S} -(-)-MTPA chlorides gave the diastereomeric esters (<u>3</u>) and (<u>4</u>), respectively. The LIS values of OMe and ¹⁹F-NMR chemical shifts of CF₃ in the pair of the diastereomeric esters are shown in Table I. The negative sign of the \triangle LIS_{OME} value⁴) for MTPA esters suggests that the secondary hydroxyl group at C-5 in <u>2</u> has the <u>S</u> configuration. In addition, Mosher's model⁵) predicts that the <u>S</u>-(-)-MTPA ester (<u>4</u>) will show CF₃ resonance downfield relative to the same resonance in the <u>R</u>-(+)-MTPA ester (<u>3</u>) if the secondary hydroxyl group has the <u>S</u> configuration. Alternatively, in the case of the <u>R</u> configuration, the prediction will be reversed. The data on the CF₃ resonance in Table I revealed that the secondary hydroxyl group at C-5 has the <u>S</u> configuration. Application of Horeau's method⁶) to the secondary alcohol (<u>2</u>) also showed the configuration at C-5 to be <u>S</u> : observed rotation, (<u>a</u>)^{24°}_D -1.1°(c 2.54, C₆H₆); optical yield, 18 %. Since the compound (<u>1</u>) was obtained by acetylation of (<u>2</u>) with acetic anhydride in pyridine³, the absolute configuration of C-5 in <u>1</u> and <u>2</u> was thus established to be <u>S</u>.

Table I. LIS values of OMe and fluorine chemical shifts of CF_3 for MTPA esters

Compound	LIS _{OMe} a)	∆ LIS _{OMe} b)	CF3 ^{c)}	
3	1.27		8.48	
<u>4</u>	1.82	- 0.55	9.08	

a) determined at a molar ratio of Eu(fod)3/ester of 1.7:1 in CCl₄ at 60 MHz. b) The value represents the difference in two LISOMe for MTPA esters; LISOMe(3)-LISOMe(4). c) Fluorine shifts (in ppm) are downfield from external TFA in CDCl₃ at 56.4 MHz.

The stereochemistry of the other chiral centers at C-6, 3a and 14a were determined by relating to the configuration of C-5 as follows. The 360 MHz ¹H-NMF spectrum of <u>1</u>(Fig.1) gave clear separation of all of the overlapping signals observed for the protons at C-6, 5, 4, 3a, 14a and 14 positions in the 100 MHz spectrum, and exact coupling constant values between the protons at those positions were obtained by decoupling experiments as listed in Table II.⁷ Similar coupling constants for the protons of the same positions in <u>2</u> were observed by measuring the 360 MHz ¹H-NMR spectrum. Therefore, both compounds (<u>1</u>) and (<u>2</u>) were suggested to have a similar conformation, especially in the neighborhood of the chiral centers at C-6, 5, 3a and 14a.

A remarkable shifts for both H-5 and H-3a were observed in going from the alcohol (2) to the acetate (1): H-5 downfield shift from 3.72 to 5.17 ppm; H-3a upfield shift from 3.52 to 3.01 ppm (Table II). The upfield shift of H-3a of 1 can be explained by the anisotropic effect of the acetoxyl group,⁸⁾ and the protot on C-3a is presumed to be extremely close proximity to the acetoxyl on C-5 as depicted in Fig.2. This arrangement was supported by the observation of the

Compound	<u>1</u>	2
H-3a	3.01 (m)	3.52 (m)
H-4	1.76 (ddd,J=15.3,11.2,2.1)	
	1.82 (ddd, J=15.3, 10.4, 4.3)	1.68 (ddd,J=15.1,11.0,3.0)
H- 5	5.17 (ddd,J=10.4,3.0,2.1)	3.72 (tt,J=10.9,2.3)
H-6	2.35 (m)	2.34 (m)
H-10	5.07 (brt,J=8.0)	5.06 (brt,J=8.0)
H - 14	5.06 (brd,J=10.0)	5.11 (brd,J=10.0)
H-14a	5.37 (dd,J=10.0,8.4)	5.32 (dd,J=10.0,8.0)
Ha	6.22 (d,J=3.2)	6.21 (d,J=3.0)
НЪ	5.48 (d,J=2.9)	5.52 (d,J=2.5)
COCH ₂	2.19 (s)	2.20 (s)
0Ac	2.14 (s)	
OH		3.38 (d,J=10.9)
C-9 Me	1.58 (brs) ^{b)}	1.63 (brs) ^{b)}
C-13 Me	1.86 (brs) ^{b)}	1.76 (brs) ^{b)}

Table II. 360 MHz ¹H-NMR data^{a)} of <u>1</u> and <u>2</u>

a) Chemical shifts are given in δ units with tetramethylsilane as an internal standard in $CDCl_3(J \text{ in Hz})$. b) These assignments may be reversed.

Fig.1 360 MHz 1 H-NMR spectra and decoupling experiments of $\underline{1}$

Fig.2 Coupling constant assignments for 1 (J in Hz)

coupling constants between H-5, H-4 and H-3. in 1. Furthermore, the coupling constant between H-3a and H-14a $(J_{3a, 14a} = 8.4 \text{ Hz})$ is consistent with cis relationship. Accordingly, from the consideration described above, the configuration of C-5, 3a and 14a in 1 were assinged as shown in Fig.2. Determination of remaining chirality at C-6 which is shown in Fig.2, was based on the vicinal coupling constant $(J_{5,6} = 3 \text{ Hz})$ between H-5 and H-6 in $\underline{1}$, and also on the presence of strong IR bands (μ_{max} 3400, 168) cm⁻¹) due to the intramolecular hydrogen

bonding of the hydroxyl and methyl ketone in 2. This was also supported by hydrogbonding induced downfield shift¹⁰⁾ for the carbonyl carbon of the methyl ketone in ¹³C-NMR spectrum of 2 (211.0 ppm) from its position in 1 (208.8 ppm).³⁾

Thus, the stereochemistry of both compounds $(\underline{1})$ and $(\underline{2})$ was established to have same absolute configuration of 3aR, 14aR, 5S and 6R as depicted in 1 and 2. Acknowledgement : The authors wish to thank Mr. John F. Kozlowski, Purdue University, for the measurement of 360 MHz ¹H-NMR spectra. This investigation was supported in part by the National Institutes of Health Research Grant No.RR01077 from the Division of Research Resources, which is gratefully acknowledged.

References and Note

- 1) J.C.Braekman, "Marine Natural Products Chemistry," ed. by D.J.Faulkner and W.H.Fenical, Plenum Press, N.Y., 1977, p.5.
 2) B.Tursh, J.C.Braekman, D.Daloze, M.Herin, R.Karlsson and D.Losman, Tetrahedron <u>31</u>, 192(1975); A.J.Weinheimer, J.A.Matson, M.B.Hossain and D.van der Helm, Tetrahedron Lett., 2923(1977).
 3) Y.Yamada, S.Suzuki, K.Iguchi, K.Hosaka, H.Kikuchi, Y.Tsukitani, H.Horiai and F.Shibayama, Chem.Pharm.Bull.(Tokyo), <u>27</u>, 2394 (1979).
 4) S.Yamaguchi and F.Yasuhara, Tetrahedron Lett., 89(1977); Y.Sugimoto, T.Sakita Y.Moriyama, T.Murae, T.Tsuyuki and T.Takahashi, Tetrahedron Lett., 4285(1978).
 5) G.R.Sullivan, J.A.Dale and H.S.Mosher, J.Org.Chem., <u>38</u>, 2143(1973).
 6) A.Horeau, "Stereochemistry Fundamentals and Methods," Vol.3, ed. by H.B.Kagan, Geog Thieme, Stuttgart, 1977, p.51.
 7) Fig.1 shows a summary of decoupling experiments of <u>1</u> as follows :

- 7) Fig.1 shows a summary of decoupling experiments of <u>1</u> as follows :

irradiated proton(5, ppm)	observed protons and changes(J in Hz)
H-3a (3.01)	$H=4(1.76, ddd) \longrightarrow dd, J=15.3, 2.1; H=4(1.82, ddd) \longrightarrow dd, J=15.3, 10.4; Ha(5.48, d) \longrightarrow s:$
	$Hb(6.22, d) \longrightarrow s; H-14a(5.37, dd) \longrightarrow d, J=10$
H-5(5.17)	$H-4(1.76, ddd) \longrightarrow dd, J=15.3, 11.2;$
ц //1 76)	$H-4(1.82, ddd) \longrightarrow dd, J=15.3, 4.3$
H-6(2.35)	H=5(5.1/, ddd) dd,J=10.4,2.1
Y Kawagoo V Sato M.Natsumo	H. Hasegawa T. Okamoto and K. Tsuda, Chem. Pharm.

- E B C Bull. (Tokyo), 10, 338(1962). 9) J.C.Coll, S.J.Michell and G.J.Stokie, Aust.J.Chem., <u>30</u>, 1859(1976). 10) M.Kobayashi, Y.Terui, K.Tori and N.Tsuji, Tetrahedron Lett., 619(1976).

(Received in Japan 7 July 1980)